
Copyright 2002-2016 e-Learning Consulting.

All Rights Reserved.

SCORM Developer's

Toolkit

Web site: www.e-learningconsulting.com

E-mail: info@e-learningconsulting.com

http://www.e-learningconsulting.com/
mailto:info@e-learningconsulting.com

SCORM Developer’s Toolkit Page 2 of 70

Table of Contents

ABOUT THIS GUIDE .. 5

WHO SHOULD USE THE SCORM DEVELOPER'S TOOLKIT .. 5

HOW TO USE THIS GUIDE .. 5

TYPOGRAPHIC CONVENTIONS .. 5

ANATOMY OF A SCORM COURSE ... 6

TOOLKIT OVERVIEW .. 8

TOOLKIT JAVASCRIPT FUNCTIONS ... 10

SESSION FUNCTIONS .. 11

Initialize a Session .. 11

Terminate a Session .. 12

Tell the LMS the Learner Will Return in another Session 12

LAUNCH CONDITION FUNCTIONS ... 13

Is This the First Launch of the SCO ... 13

Get the Launch Data ... 14

Get the Credit/No-Credit Launch Information ... 15

Get the Mode Launch Information ... 16

TIME FUNCTIONS ... 17

Set the Start Time for the Session ... 17

Set the Session Time ... 18

Get the Maximum Time Allowed for this SCO .. 18

Get the Time Limit Action for this SCO .. 20

Get the Total Time .. 21

STATE MANAGEMENT FUNCTIONS ... 22

Set the Bookmark .. 23

Get the Bookmark ... 23

Set the Suspend Data .. 24

Get the Suspend Data .. 25

COMPLETION FUNCTIONS... 26

Set the Completion Status ... 26

Get the Completion Status .. 27

Set the Completion Percentage ... 28

Get the Completion Percentage .. 28

Get the Completion Threshold .. 29

PASS/FAIL FUNCTIONS ... 30

Set the Pass/Fail Status ... 30

Get the Pass/Fail Status ... 31

SCORM Developer’s Toolkit Page 3 of 70

SCORE FUNCTIONS ... 32

Get the passing score for this SCO ... 32

Set the Score ... 33

Get the Score ... 34

INTERACTION FUNCTIONS .. 35

Set Interactions.. 36

Get the Index of an Interaction from Its ID .. 39

SECONDARY OBJECTIVE FUNCTIONS ... 40

Set Secondary Objectives ... 41

Get the Index of an Objective from Its ID .. 43

Get the Number of Secondary Objectives .. 43

Get the Score of a Secondary Objective ... 44

Get the Completion Status of a Secondary Objective ... 44

Get the Completion Percentage of a Secondary Objective 45

Get the Pass/Fail Status of a Secondary Objective ... 45

Get the Description of a Secondary Objective .. 46

TYPE OF COMMUNICATIONS FUNCTIONS.. 46

Determine If the SCO Can Communicate With the LMS .. 47

Get the SCORM Version .. 48

LOWER LEVEL FUNCTIONS .. 48

SAMPLE SCOS .. 50

SAMPLE 1 – A SCO LAUNCHED WITHOUT A FRAMESET ... 51

The SCO's Launch File – launch.htm ... 51

THE CONTENT PAGES IN THE SCO ... 52

Including the JavaScript Files ... 53

Links in the Content Pages ... 53

Unloading a Content Page .. 54

Completing the Attempt on the SCO .. 54

SAMPLE 2 – A VARIATION TO SAMPLE 1 .. 55

SAMPLE 3 – A TEST IN A SCO LAUNCHED WITHOUT A FRAMESET 56

The Question Pages... 56

The Summary Page ... 57

SAMPLE 4 – A SCO LAUNCHED WITH A FRAMESET .. 57

The SCO's Launch File – launch.htm ... 58

THE CONTENT PAGES IN THE SCO ... 58

Including the JavaScript Files ... 59

Navigation within the SCO ... 59

Completing the Attempt on the SCO .. 60

SAMPLE 5 – A SCO CREATED WITH FLASH ... 61

The SCO's Launch File – launch.htm ... 62

THE CONTENT OF THE SCO ... 63

SCORM Developer’s Toolkit Page 4 of 70

Including the JavaScript Files ... 64

Navigation within the SCO ... 64

Completing the Attempt on the SCO .. 65

CREATING YOUR OWN SCO .. 66

TESTING THE FUNCTIONALITY OF YOUR SCO .. 67

TEST THE USE OF THE SCORM RUNTIME API... 67

TEST THE INFORMATION REPORTED TO SUPPORT YOUR INSTRUCTIONAL DESIGN 68

TEST THE USE OR STATE DATA TO SUPPORT MULTIPLE LAUNCHES OF YOUR SCO 68

PUBLISHING YOUR SCORM COURSE ... 69

CREATE A SCORM MANIFEST .. 69

CREATE A SCORM PACKAGE .. 70

SAMPLE COURSES .. 70

SCORM Developer’s Toolkit Page 5 of 70

About This Guide

Who Should Use the SCORM Developer's Toolkit

The toolkit is designed for e-learning course developers who want to create
SCORM-based courses using with HTML/JavaScript or Flash. You will find the toolkit
very easy to use if you are a web or Flash developer who can use JavaScript or
ActionScript to create interactive web pages or Flash movies. The toolkit will let
you add the SCORM portion of your course quickly and with little fuss.

The toolkit is designed to save you time. The toolkit contains well documented and
tested JavaScript functions that correctly implement SCORM 1.2 and SCORM 2004
communications with the LMS. The same toolkit functions can be used for both
SCORM 1.2 and SCORM 2004 communications!

The toolkit is not for everyone. You will have trouble using the toolkit if you have
never used JavaScript (or ActionScript for Flash developers).

How to Use This Guide

Read the Anatomy of a SCORM Course section to get a general understanding of
SCORM. Read the remaining sections to learn how to use the SCORM Developer's
toolkit.

Typographic Conventions

Bold Arial Font is used to identify user the name of files, JavaScript functions and
parameters to those functions.

SCORM Developer’s Toolkit Page 6 of 70

Anatomy of a SCORM Course
A SCORM course1 is a collection of one or more Sharable Content Objects (SCOs). A
SCO can provide any type of self-paced learning activity. For example, a SCO could
provide a tutorial, a quiz, a simulation or a test. The Learning Management System
(LMS) launches the SCOs within a course. A SCO must contain at least one HTML
page that contains JavaScript. SCOs can be small (a single page) or huge (thousands
of pages). You will decide what size SCO works best for you based on the
instructional requirements of your course. A SCO can contain any type of content
that can be delivered in a browser (HTML text, graphics, animation, audio and
video). A SCO can use plug-ins. The design and content of the SCO is entirely up to
you.

The SCORM standard defines the SCORM Runtime API that lets a SCO communicate
with the LMS. The LMS provides the SCORM Runtime API for the SCO to use when
the SCO is launched. The SCORM API lets the SCO save and restore state
information. State information can include information important to the SCO such
as the last page viewed and the learner's response to questions. Saving and
restoring state information lets a learner:

1. Launch the SCO and interact with it.

2. Stop the SCO (close the browser window or navigate away from the SCO).

3. Relaunch the SCO. The relaunched SCO can then retrieve the state
information from the LMS and then use that state information to return the
learner to the last viewed page and restore all of his interactions with the
SCO.

SCORM refers to the launching of a SCO as a session. Every time a learner launches
a SCO, a new session is started. A learner can complete a SCO in one or more
sessions. The SCO decides when the learner has done enough to complete an
attempt on the SCO. This attempt can be spread out over one or more sessions.

The SCORM Runtime API also allows the SCO to record information about the
learner's actions with the SCO. This information can include:

1 The SCORM specification does not actually use the word "course" to define a collection of SCOs. Instead
it refers to a collection of SCOs as a "content aggregation". Most developers are more comfortable with
the word "course" so we use it throughout the guide.

SCORM Developer’s Toolkit Page 7 of 70

 If the learner has completed the attempt in this session

 If the learner actions with the SCO were judged as passed or failed

 An overall score

 The results of individual interactions

 The completion of objectives

 The time of each session

 Other information such as the learner's comments

SCORM Developer’s Toolkit Page 8 of 70

Toolkit Overview
The SCORM Developer's Toolkit helps you create courses that conform to the
SCORM2 standard. The toolkit contains JavaScript functions, HTML/JavaScript
samples, a Flash sample and this guide. The toolkit provides a rich set of JavaScript
functions that make it easy to work with SCORM. This lets you spend your time
thinking about the unique functionality of your SCO. The toolkit JavaScript
functions will help you:

1. Develop SCORM-based courses from scratch

2. Modify existing courses so they will support SCORM

3. Create HTML/JavaScript courses that will work with or without framesets.

4. Create Flash courses.

To create SCOs with the toolkit, you must be familiar with HTML and JavaScript.
You must be familiar with ActionScript if you would like to create a SCO with Flash.

Generally a SCO behaves in this way (your SCO will use the functions provided by
the toolkit to perform these actions):

1. The SCO initializes the communications session with the LMS.

2. Records the start time of the SCO.

3. Detects if this is the first time the learner has launched the SCO (the first
session). If this is the first launch, the SCO shows the initial content of the
SCO. If the learner has already launched the SCO (has already completed at
least one session), the SCO gets the bookmark (generally this is the last page
viewed) and other state information it has saved in previous sessions.

4. Provides the instructional interactions required by the SCO. The
instructional interactions could include the presentation of a tutorial,
delivering a quiz or test, interacting with the learner through a simulation,
etc.

2 The SCORM Developer's Toolkit supports SCORM 1.2 and SCORM 2004. All references to SCORM in this
document refer to SCORM 1.2 and SCORM 2004.

SCORM Developer’s Toolkit Page 9 of 70

5. The SCO reports information to the LMS at appropriate times. This
information can include:

 Set a new bookmark when the learner visits a new part of the SCO (for
example, visits a new HTML page or navigates to a section within a Flash
movie).

 Set the state information to keep track of the learner's actions. For
example, the state information might be updates to keep track of the
learner's response to a question.

 Tell the LMS how the learner performed on a specific question. For
example, the SCO can tell the LMS that a learner completed a question
with a specific identifier. This question was a true-false type question.
The learner responded with true but the correct answer was false so the
learner was incorrect.

 Determine if the learner has completed the SCO.

 Determine if the learner has passed or failed.

 Record an overall score for the SCO.

 Get and set other SCORM data items such as the completion of
objectives within the SCO.

6. Record the time to complete this session.

7. The SCO can set the information described at any time during the session.
The SCO must communicate this information before the SCO is unloaded
(browser closed or the browser is loaded with another SCO).

8. Ends the communication session.

SCORM Developer’s Toolkit Page 10 of 70

Toolkit JavaScript Functions
The toolkit's JavaScript functions are in sco_api.js. You will include sco_api.js in all
of your SCOs so you can call these JavaScript functions from your SCO's HTML pages
and Flash movies.

Your SCO must call the JavaScript functions to initiate and terminate the SCO
communications session. Your SCO may call the other JavaScript functions as
needed. For example, you can decide whether or not your SCO will call the

setScore() function to record a score for your SCO.

The JavaScript functions fit within these categories:

 Session – initiate and terminate the SCORM communication session

 Launch conditions – functions that provide information about the launch of
the SCO

 Time – functions to manage the session time

 State management – functions to manage the bookmark and other state
data

 Completion – functions to handle the completion of the SCO

 Pass/Fail – functions to set/get the pass/fail status of the SCO

 Score – functions to set/get the score of the SCO

 Interaction – functions to set/get interactions

 Objective – functions to set/get objectives

 Type of communications – functions that let your SCORM identify the type
of communications available with the LMS

 Lower level – lower level functions to directly call the SCORM 1.2 and
SCORM 2004 Runtime API provided by the LMS

SCORM Developer’s Toolkit Page 11 of 70

Session Functions

Your SCO needs to initiate and terminate the communication session with the LMS.
The initiation and termination of the session must be done every time your SCO is
launched. You will usually initialization the session as soon as your SCO is loaded.
You will usually terminate the session when your SCO is unloaded or you have
finished communicating with the LMS for this session. The 5 samples show ways to
call these session functions.

Your SCO should also tell the LMS if the learner will return in a follow-on session to
complete the attempt on the SCO.

Initialize a Session

You must initialize the SCORM communications session every time your SCO is
launched. You must initialize the SCORM session before you call any other functions
in the toolkit.

function initCommunications()

Parameters: none

Returns: nothing

Example

<script language="javascript" type="text/javascript">

function initSCO() {
/* tell SCORM API we have started the SCO session */
initCommunications();

… more initialization for this SCO …

}
</script>

<body onload="initSCO()" onbeforeunload="termSCO()" onUnload="termSCO")>

SCORM Version Action

SCORM 1.2 Calls API.LMSInitialize("")

SCORM 2004 Calls API_1484_11.Initialize("")

SCORM Developer’s Toolkit Page 12 of 70

Terminate a Session

Your SCO must terminate the SCORM communications session before it is unloaded.
You cannot call any other functions in the toolkit after you terminate the SCORM
session.

function termCommunications()

Parameters: none

Returns: nothing

Example

<script language="javascript" type="text/javascript">
function termSCO() {
 /* see if we have already called this function */

 if (!_bTerminated) {
 /* we have not, so set this var to make sure we do this only once */
 _bTerminated = true;

 /* record the session time */
 setSessionTime(_timeSessionStart);

 /* tell SCORM we are done with this SCO session */
 termCommunications();
 }
}</script>

<body onload="initSCO()" onbeforeunload="termSCO()" onUnload="termSCO")>

SCORM Version Action

SCORM 1.2 Calls API.LMSFinish("")

SCORM 2004 Calls API_1484_11.Terminate("")

Tell the LMS the Learner Will Return in another Session

A learner can take several sessions to complete his/her attempt on a SCO. Your
SCO should tell the LMS if the learner will return in another session to complete the
SCO.

The LMS will only save the bookmark, suspend data and other SCORM state data
(such as interactions in SCORM 2004) between sessions if you explicitly tell the LMS
that the learner will return.

SCORM Developer’s Toolkit Page 13 of 70

function learnerWillReturn(bWillReturn)

Parameters: bWillReturn – true if the learner will return to the SCO in another
session and the state data should be saved for the next session, else false

Returns: nothing

Example

/* the attempt on this SCO is not complete, so tell the LMS that the learner will return

and we want it to retain the bookmark, suspend data and other state data so we will
have it available in the next session */
learnerWillReturn(true);

SCORM Version Action

SCORM 1.2 Sets the value of API.cmi.core.exit

SCORM 2004 Sets the value of API_1484_11.cmi.exit

Launch Condition Functions

Your may want to have your SCO work in different ways depending on the launch
conditions. For example, if your SCO has been launched before, you may want to
restore the bookmark and automatically navigate to that bookmark within your
SCO. You launch conditions provide these functions:

 If this is the first launch of the SCO by the learner

 The launch data available to the SCO

 If this SCO has been launched for credit

 If this SCO has been launched in normal, review or browse mode

Is This the First Launch of the SCO

You may want your SCO to behave differently if this is the first time the learner has
launched the SCO versus if this is a follow-on launch of the SCO. If the SCO has

SCORM Developer’s Toolkit Page 14 of 70

been launched before, you may want to retrieve the bookmark and other state
information that your SCO set in previous sessions.

function isFirstLaunch()

Parameters: none

Returns: true if this is the first launch of the SCO, else false

Example

/* see if this is the first launch of the SCO by this learner */
if (isFirstLaunch()) {
 /* it is, set the status to incomplete so the LMS knows the learner is not
done with this SCO yet */
 setCompletionStatus("incomplete");

 /* we will need to get the bookmark in the next session so tell the LMS that the
learner may return in the future */
 learnerWillRelaunch(true);

 /* go to the first page of the course */
 gotoPage(0);
} else {
 /* not the first launch, so we can get the bookmark (the bookmark was set in a
previous session) */
 var sBookmark = getBookmark();

 /* go to the bookmarked page */
 gotoPage(sBookmark-0);
}

SCORM Version Action

SCORM 1.2 Gets the value of API.cmi.core.entry. Returns true is the value =
"ab-initio"

SCORM 2004 Gets the value of API_1484_11.cmi.entry. Returns true is the
value = "ab-initio"

Get the Launch Data

The imsmanifest.xml file describes a SCORM course. This file can include a tag that
contains the launch data for the SCO. If this tag is missing, getLaunchData() will
return "" (an empty string). The name of the tag depends on the version of SCORM.

SCORM Developer’s Toolkit Page 15 of 70

The tag is <adlcp:datafromlms> for SCORM 1.2. The tag is <adlcp:dataFromLMS> for
SCORM 2004. Your SCO can use this launch data.

function getLaunchData()

Parameters: none

Returns: A string containing the launch data contained in the imsmanifest.xml file
for this SCO

Example

/* get the launch data */

var sLaunchData = getLaunchData();

SCORM Version Action

SCORM 1.2 Returns the value of API.cmi.launch_data

SCORM 2004 Returns the value of API_1484_11.cmi.launch_data

Get the Credit/No-Credit Launch Information

SCORM allows a LMS to define a SCO as for credit or for no-credit. It is up to the
LMS what to do with the data collected from the SCO when this value is set. You
have the option to make your SCO behave in a different manner if it is offered for
credit or for no-credit.

function getCredit()

Parameters: none

Returns: A string containing either "credit" or "no-credit"

Example

/* get the credit information for this SCO */

var sCredit = getCredit();

/* see if this is a no-credit launch */

SCORM Developer’s Toolkit Page 16 of 70

If (sCredit == "no-credit") {
 /* it is, remind the learner that he/she will not receive credit */
 …
}

SCORM Version Action

SCORM 1.2 Returns the value of API.cmi.core.credit

SCORM 2004 Returns the value of API_1484_11.cmi.credit

Get the Mode Launch Information

SCORM allows a LMS to define the mode. In "normal" mode, the SCO should provide
its regular instruction to the learner. The "review" mode indicates the learner is
returning but the LMS will not save the record the learner's actions within the SCO.
You will decide if your SCO will behave in a different manner based on the mode.

function getMode()

Parameters: none

Returns: A string containing "browse", "normal" or "review"

Example

/* get the mode information for this SCO */
var sMode = getMode();

/* see if this is review mode */
If (sMode == "mode") {
 /* it is, let the learner navigate to any part of the content in the SCO */
 …

}

SCORM Version Action

SCORM 1.2 Returns the value of API.cmi.core.mode

SCORM 2004 Returns the value of API_1484_11.cmi.mode

SCORM Developer’s Toolkit Page 17 of 70

Time Functions

You have the option of keeping the time of the SCOs session and taking actions
based on time. The time functions provide these capabilities:

 Set the start time for the session

 Report the elapsed time for the session

 Find out how much time has been allowed for the learner's attempt on the
SCO

 Find out what the SCO should do if the learner has exceeded the allotted
time

 Get the total time taken so far for the learner's attempt on this SCO

Set the Start Time for the Session

You can tell the LMS the time the learner spent in the session with the SCO. If you
would like to record the session time you will want to call startSessionTime() as
soon as your SCO is launched.

function startSessionTime()

Parameters: none

Returns: The current Date object provided by JavaScript. You can use this value to
get the current year, month, day, time and other date-related data. This function
also sets a global variable named _timeSessionStart which is set to the current Date
object.

Example

function initSCO() {

 /* tell SCORM API we have started the SCO session */
 initCommunications();

 /* remember the start time so we can record the duration of this session when
the SCO session ends */
 startSessionTime();

SCORM Developer’s Toolkit Page 18 of 70

 …

SCORM Version Action

SCORM 1.2 This function does not call and SCORM 1.2 functions

SCORM 2004 This function does not call and SCORM 2004 functions

Set the Session Time

Your SCO can set the session time. The LMS adds the times of each session together
to get the total time for the learner's attempt on your SCO.

function setSessionTime()

Parameters: a JavaScript Date object that signifies the time the SCO was started

Returns: nothing

Example

/* record the session time */
setSessionTime(_timeSessionStart);

SCORM Version Action

SCORM 1.2 Sets the value of API.cmi.core.session_time

SCORM 2004 Sets the value of API_1484_11.cmi.session_time

Get the Maximum Time Allowed for this SCO

The imsmanifest.xml file describes a SCORM course. This file can include XML data
that contains the maximum amount of time allowed for the learner's attempt on
your SCO. If the XML information is missing, getMaxTimeAllowed() will return "" (an
empty string). The information is contained in the < adlcp:maxtimeallowed> tag
for SCORM 1.2. The data is defined in the imsss:attemptAbsoluteDurationLimit
attribute of the <imsss:limitConditions> tag for SCORM 2004.

SCORM Developer’s Toolkit Page 19 of 70

Your SCO can use this data to take an action based on the elapsed time for the
attempt on your SCO.

function getMaxTimeAllowed ()

Parameters: none

Returns: a string containing the maximum time in this format:

P[yY][mM][dD][T[hH][nM][s[.s]S]] where:

 y: The number of years (integer, >= 0, not restricted)

 m: The number of months (integer, >=0, not restricted)

 d: The number of days (integer, >=0, not restricted)

 h: The number of hours (integer, >=0, not restricted)

 n: The number of minutes (integer, >=0, not restricted)

 s: The number of seconds or fraction of seconds (real or integer, >=0, not
restricted). If fractions of a second are used, SCORM further restricts the
string to a maximum of 2 digits (e.g., 34.45 – valid, 34.45454545 – not valid).

 The character literals designators P, Y, M, D, T, H, M and S shall appear if
the corresponding non-zero value is present.

 Zero-padding of the values shall be supported. Zero-padding does not
change the integer value of the number being represented by a set of
characters. For example, PT05H is equivalent to PT5H and PT000005H.

Here are some example elapsed times and their meaning:

 P1Y3M2DT3H indicates a period of time of 1 year, 3 months, 2 days and 3
hours

 PT3H5M indicates a period of time of 3 hours and 5 minutes

Example

/* get the maximum time allowed for this SCO */

var sMaxTime = getMaxTimeAllowed();

/* see if we have exceeded the time */
if (haveExceededTime(sMaxTime)) {
 /* we have, take the proper action */
 showTimeLimitExceeded();
}

SCORM Developer’s Toolkit Page 20 of 70

SCORM Version Action

SCORM 1.2 Gets the value of API.cmi.student_data.max_time_allowed

SCORM 2004 Gets the value of API_1484_11.cmi.max_time_allowed

Get the Time Limit Action for this SCO

The imsmanifest.xml file describes a SCORM course. This file can include XML data
that contains the action to take when the time limit is exceeded for this SCO. If
the XML information is missing, getTimeLimitAction() will return "" (an empty
string). The information is contained in the < adlcp:timelimitaction> tag for SCORM
1.2. The data is defined in the tag <adlcp:timeLimitAction> for SCORM 2004.

Your SCO can use this data to decide what action to take when the time limit is
exceeded.

function getTimeLimitAction()

Parameters: none

Returns: a string containing one of the following values:

 "exit,message": The learner should be forced to exit the SCO. The SCO
should provide a message to the learner indicating that the maximum time
allowed for the learner attempt was exceeded.

 "continue,message": The learner should be allowed to continue in the SCO.
The SCO should provide a message to the learner indicating that the
maximum time allowed for the learner attempt was exceeded.

 "exit,no message": The learner should be forced to exit the SCO with no
message.

 "continue,no message": Although the learner has exceeded the maximum
time allowed for the learnerattempt, the learner should be given no
message and should not be forced to exit the SCO. This is the default value
for this data model element.

Example

/* get the time limit action for this SCO */
var sAction = getTimeLimitAction();

/* take the appropriate action */

SCORM Developer’s Toolkit Page 21 of 70

switch (sAction) {
 case "exit,message":
 exitWithMessage();

 break;
case "continue,message":

 continueWithMessage();
 break;
case "exit,no message":

 exitWithNoMessage();
 break;
case "":

case "continue,no message":
 continueWithNoMessage();

 break;
}

SCORM Version Action

SCORM 1.2 Gets the value of API.cmi.student_data.time_limit_action

SCORM 2004 Gets the value of API_1484_11.cmi.time_limit_action

Get the Total Time

Your SCO can set the session time. The LMS adds the times of each session together
to get the total time for the learner's attempt on your SCO. The LMS will set the
total time to 0 seconds if your SCO does not set the session time. The total time is
only set when the SCO calls the terminate function. So the actual elapsed time is
the total time plus the current duration within the current session.

function getTotalTime()

Parameters: none

Returns: a string containing the maximum time in this format:

P[yY][mM][dD][T[hH][nM][s[.s]S]] where:

 y: The number of years (integer, >= 0, not restricted)

 m: The number of months (integer, >=0, not restricted)

 d: The number of days (integer, >=0, not restricted)

 h: The number of hours (integer, >=0, not restricted)

 n: The number of minutes (integer, >=0, not restricted)

SCORM Developer’s Toolkit Page 22 of 70

 s: The number of seconds or fraction of seconds (real or integer, >=0, not
restricted). If fractions of a second are used, SCORM further restricts the
string to a maximum of 2 digits (e.g., 34.45 – valid, 34.45454545 – not valid).

 The character literals designators P, Y, M, D, T, H, M and S shall appear if
the corresponding non-zero value is present.

 Zero-padding of the values shall be supported. Zero-padding does not
change the integer value of the number being represented by a set of
characters. For example, PT05H is equivalent to PT5H and PT000005H.

Here are some example elapsed times and their meaning:

 P1Y3M2DT3H indicates a period of time of 1 year, 3 months, 2 days and 3
hours

 PT3H5M indicates a period of time of 3 hours and 5 minutes

Example

/* get the total time of the attempt prior to the launch of this session */
var sTotalTime = getTotalTime();

SCORM Version Action

SCORM 1.2 Gets the value of API.cmi.core.total_time

SCORM 2004 Gets the value of API_1484_11.cmi.total_time

State Management Functions

Your may want to have your SCO save and restore the learners actions with the
SCO. Saving state lets the learner stop the SCO (end the SCO session by closing the
browser or navigating to a new SCO) and then restart the SCO later as if he/she
never left. Saving and restoring state can let set/get bookmarks and save/restore
the learners interactions to questions in the SCO. If you want to LMS to remember

the state information, you must call learnerWillReturn(true). The state management
functions let you:

 Set the bookmark

SCORM Developer’s Toolkit Page 23 of 70

 Get the bookmark

 Set other state data in a data item called "suspend data"

 Get other the "suspend data"

Set the Bookmark

The bookmark is simply a string that contains information about the location within
the SCO. The format and meaning of the string is only known to the SCO. The LMS
simply holds the bookmark information for your SCO and returns it when
requested.

function setBookmark(sBookmark)

Parameters: sBookmark – a string

Returns: nothing

Example

/* store the bookmark – the bookmark is an array in an index that keeps track of the

current page viewed by the learner */
/* make sure we store the index of the array as a string */
setBookmark(_nCurrentPage + "");

SCORM Version Action

SCORM 1.2 Sets API.cmi.core.lesson_location (maximum 256 characters)

SCORM 2004 Returns the value of API_1484_11.cmi.location (maximum 1000
characters)

Get the Bookmark

The bookmark is simply a string that contains information about the location within
the SCO. The format and meaning of the string is only known to the SCO. The LMS
simply holds the bookmark information for your SCO and returns it when
requested.

function getBookmark()

SCORM Developer’s Toolkit Page 24 of 70

Parameters: none

Returns: a string

Example

/* not the first launch, so we can get the bookmark (the bookmark was set in a
previous session) */

var sBookmark = getBookmark();

/* go to the bookmarked page, subtract 0 to convert the bookmark from a string to a
number */
gotoPage(sBookmark-0);

SCORM Version Action

SCORM 1.2 Sets API.cmi.core.lesson_location (maximum 256 characters)

SCORM 2004 Returns the value of API_1484_11.cmi.location (maximum 1000
characters)

Set the Suspend Data

The suspend data is simply a string that contains information about the state of the
SCO. The format and meaning of the string is only known to the SCO. The LMS
simply holds the suspend data information for your SCO and returns it when
requested.

function setSuspendData(sSuspend)

Parameters: sSuspend – a string

Returns: nothing

Example

/* store the suspend data, we need to store information in an array plus the current

score. So, store the flattened array + a separator + the score */
setSuspendData(aResponses.join(",") + ":" + nScore);

SCORM Version Action

SCORM 1.2 Sets API.cmi.suspend_data (maximum 4096 characters)

SCORM 2004 Sets API_1484_11.cmi.suspend_data (maximum 64000

SCORM Developer’s Toolkit Page 25 of 70

characters)

Get the Suspend Data

The suspend data is simply a string that contains information about the state of the
SCO. The format and meaning of the string is only known to the SCO. The LMS
simply holds the suspend data information for your SCO and returns it when
requested.

function getSuspendData()

Parameters: nothing

Returns: a string

Example

/* get the suspend data, we previously stored a flattened array + a separator + the
score */
var sSuspend = getSuspendData(aResponses.join(",") + ":" + nScore);

/* separate the parts of the suspend data */
var aParts = sSuspend.split(":");

/* the first part contains the flattened array, recreate the array */
aResponses = aParts[0].split(",");

/* the second part contains the score, recreate the score, convert the score into a
number */
nScore = aParts[1] – 0;

SCORM Version Action

SCORM 1.2 Gets the value of API.cmi.suspend_data (maximum 4096
characters)

SCORM 2004 Gets the value of API_1484_11.cmi.suspend_data (maximum
64000 characters)

SCORM Developer’s Toolkit Page 26 of 70

Completion Functions

You will decide when your SCO is complete. You are free to select any criterion
that meets your instructional requirements. For example, you could decide a SCO
is complete if one of these actions is taken by the learner:

 The learner views the first page of the SCO

 All pages in the SCO have been viewed

 The learner has answered all of the questions in a test

 The learner has answered enough questions in the test to achieve a passing
score

 The learner has exceeded the time allowed for the attempt on the SCO

 A simulation was completed

You can decide if the completion of the SCO should have any relationship to
passing or failing the SCO. For example, you can decide the SCO should be
complete if the learner passes or fails a test. You can decide that the SCO can
never be completed until a learner passes a test.

The completion functions let you:

 Set the completion status

 Get the completion status

 Report the completion percentage

 Get the completion percentage (if previously set)

 Get the completion threshold

Set the Completion Status

The LMS has the ability to set the completion status by itself if the SCO does not
define a completion status. So it is a good idea to mark your SCO as incomplete

SCORM Developer’s Toolkit Page 27 of 70

when the SCO is launched for the first time (when the learner is having the first
session with the SCO).

The SCO can then decide which actions by the learner constitute completion of the
SCO.

function setCompletionStatus(sCompletion)

Parameters: sCompletion – a string containing "completed", "incomplete" or "not
attempted"

Returns: nothing

Example

/* the learner has completed all of the required parts of the SCO so mark the SCO
complete */

setCompletionStatus("completed");

SCORM Version Action

SCORM 1.2 Sets API.cmi.core.lesson_status

SCORM 2004 Sets the value of API_1484_11.cmi.completion_status

Get the Completion Status

The SCO can get the completion status. This function is very useful for SCOs that
contain a single Flash movie. Your Flash movie cannot tell when the HTML page
containing the Flash movie is unloaded. So, your Flash movie does not have a final
chance to set the completion status of your SCO. However, the HTML page does get
an onunload event (and in Internet Explorer and onbeforeunload event). Your HTML
page can check to the completion status to decide if it should tell the learner that
he must do more to complete the SCO.

function getCompletionStatus()

Parameters: none

Returns: a string containing "completed", "incomplete", "not attempted", "unknown"

Example

/* see if this SCO is complete */

SCORM Developer’s Toolkit Page 28 of 70

var sComplete = getCompletionStatus();
if (sComplete == "incomplete" || sComplete == 'unknown') {
 /* it is not, make sure the LMS retains the data so the learner can return */
 retainState(true);

 /* remind the learner that he must do more to complete the SCO */
 remindLearner();
}

SCORM Version Action

SCORM 1.2 Returns API.cmi.core.lesson_status

SCORM 2004 Returns the value of API_1484_11.cmi.completion_status

Set the Completion Percentage

The SCO can tell the LMS the completion percentage. Some LMSs will show this
information in a report to learners, managers and/or administrators. You will
decide how your SCO calculates the completion percentage.

function setCompletionPercentage(sPercent)

Parameters: sPercent – a string containing a value between 0 and 1. 0 represents
no completion. 1 represents total completion. A number in between represents a
partial completion.

Returns: nothing

Example

/* the learner is halfway through the SCO, set the completion percentage */
setCompletionPercentage("0.5");

SCORM Version Action

SCORM 1.2 There is no data item in SCORM 1.2 for the completion
percentage

SCORM 2004 Sets the value of API_1484_11.cmi.progress_measure

Get the Completion Percentage

The SCO can get the completion percentage if it was previously set.

SCORM Developer’s Toolkit Page 29 of 70

function getCompletionPercentage()

Parameters: nothing

Returns: a string containing a value between 0 and 1.

Example

/* get the completion percentage */
var sPercent = getCompletionPercentage();

/* show the completion percentage to the learner */
showPercentage(sPercent);

SCORM Version Action

SCORM 1.2 There is no data item in SCORM 1.2 for the completion
percentage

SCORM 2004 Gets the value of API_1484_11.cmi.progress_measure

Get the Completion Threshold

The SCO can get the completion threshold. The completion threshold is defined in
the imsmanifest.xml file for this SCO in a SCORM 2004 course (there is not
completion threshold for SCORM 1.2). The imsmanifest.xml file uses the tag
<adlcp:completionThreshold> to store the completion threshold.

Your SCO can use the completion threshold to decide when the SCO is complete.

function getCompletionThreshold()

Parameters: nothing

Returns: a string containing a value between 0 and 1.

Example

/* get the completion threshold */

var sThreshold = getCompletionThreshold();

SCORM Version Action

SCORM 1.2 There is no data item in SCORM 1.2 for the completion threshold

SCORM Developer’s Toolkit Page 30 of 70

SCORM 2004 Gets the value of API_1484_11.cmi.completion_threshold

Pass/Fail Functions

Your SCO decides if the learner has passed or failed the attempt on the SCO. You
are free to select any criterion for pass/fail that meets your instructional
requirements. For example, you could decide the learner has passed the SCO when
one of these actions is taken by the learner:

 The learner views the first page of the SCO

 All pages in the SCO have been viewed

 The learner has answered all of the questions in a test

 The learner has answered enough questions in the test to achieve a passing
score

 A simulation was completed correctly

You can decide if the completion of the SCO should have any relationship to
passing or failing the SCO. For example, you can decide the SCO should be
complete if the learner passes or fails a test. You can decide that the SCO can
never be completed until a learner passes a test.

The pass/fail functions let you:

 Set the pass/fail status

 Get the pass/fail status

Set the Pass/Fail Status

The LMS has the ability to set the pass/fail status by itself based on the score of
the SCO. So it is a good idea to explicitly set the pass/fail when you set the SCO of
the SCO.

SCORM Developer’s Toolkit Page 31 of 70

Your SCO does not have to set the pass/fail status. However, the pass/fail status
can be used to affect the sequencing decisions between SCOs in SCORM 2004 so it
is a good idea to set the pass/fail status when you set the SCO's completion status.

function setPassFail(sPassFail)

Parameters: sPassFail – a string containing "passed" or "failed"

Returns: nothing

Example

/* the learner has completed the SCO and he/she passed, so tell the LMS the learner in
done with this attempt (learner will not return in another session) */
learnerWillReturn(false);

/* tell the LMS the learner has completed all of the work in this SCO */
setCompletionStatus("completed");

/* tell the LMS that the learner has passed */

setPassFail("passed");

SCORM Version Action

SCORM 1.2 Sets API.cmi.core.lesson_status

SCORM 2004 Sets the value of API_1484_11.cmi.success _status

Get the Pass/Fail Status

Your SCO can get the pass/fail status of the SCO.

function getPassFail()

Parameters: none

Returns: a string containing "passed", "failed" or "unknown"

Example

/* the learner has completed the SCO and he/she passed, so tell the LMS the learner is

done with this attempt (learner will not return in another session) */
learnerWillReturn(false);

/* tell the LMS the learner has completed all of the work in this SCO */

SCORM Developer’s Toolkit Page 32 of 70

setCompletionStatus("completed");

/* tell the LMS that the learner has passed */
setPassFail("passed");

SCORM Version Action

SCORM 1.2 Gets API.cmi.core.lesson_status

SCORM 2004 Gets the value of API_1484_11.cmi.success_status

Score Functions

Your SCO determines the score for a learner based on his actions within the. You
are free to select any criterion for setting the score that meets your instructional
requirements. For example, you could set the score based on:

 The result of a test

 The result of multiple tests

 The actions within a simulation

You can decide if the SCO should report a score. You can decide if the score should
apply the same or different weighting to questions presented to the learner within
the SCO.

The score functions let you:

 Get the passing score for this SCO

 Set the score

 Get the score

Get the passing score for this SCO

The imsmanifest.xml file describes a SCORM course. This file can include XML data
that contains the passing score for a SCO. If the XML information is missing,
getMaxTimeAllowed() will return "1.0". The information is contained in the

SCORM Developer’s Toolkit Page 33 of 70

<adlcp:masteryscore> tag for SCORM 1.2. The data is defined in the
<imsss:minNormalizedMeasure> tag for SCORM 2004.

function getPassingScore()

Parameters: none

Returns: a string value containing a number in the range of -1.0 to 1.0

Example

/* the learner has completed the SCO, so tell the LMS the learner is done with this
attempt (learner will not return in another session) */

learnerWillReturn(false);

/* tell the LMS the learner has completed all of the work in this SCO */
setCompletionStatus("completed");

/* set the score and make sure to convert it to a string value */
setScore(nScore + "");

/* get the passing score and convert it to a number by subtracting 0 */
var nPassingScore = getPassingScore() - 0;

/* see if the user has passed this SCO */
If (nScore >= nPassingScore) {
 /* the learner has passed the SCO */
 setPassFail("passed");
} else {
 /* the learner has not passed */

 setPassFail("failed");
}

SCORM Version Action

SCORM 1.2 Sets API.cmi.student_data.mastery_score

SCORM 2004 Sets the value of API_1484_11.cmi. scaled_passing_score

Set the Score

Your SCO can set a score for the learner's attempt on this SCO. Only one score can
be reported for a SCO. So, a SCO that presents multiple tests to a learner can only
report one overall score for the SCO.

function setScore()

SCORM Developer’s Toolkit Page 34 of 70

Parameters: a string value containing a number in the range of -1.0 to 1.0

Returns: nothing

Example

/* the learner has completed the SCO, so tell the LMS the learner is done with this
attempt (learner will not return in another session) */

learnerWillReturn(false);

/* tell the LMS the learner has completed all of the work in this SCO */
setCompletionStatus("completed");

/* set the score and make sure to convert it to a string value */
setScore(nScore + "");

/* get the passing score and convert it to a number by subtracting 0 */
var nPassingScore = getPassingScore() - 0;

/* see if the user has passed this SCO */
If (nScore >= nPassingScore) {
 /* the learner has passed the SCO */
 setPassFail("passed");
} else {
 /* the learner has not passed */

 setPassFail("failed");
}

SCORM Version Action

SCORM 1.2 Sets API.core.score.raw = 100 * the score reported by this
function. A value of 0 is set if you pass a negative score.
Sets API.core.score.min = "0"
Sets API.core.score.max = "100"

SCORM 2004 Sets the value of API_1484_11.cmi. score.scaled

Get the Score

Your SCO can get a score if you previously set a score using setScore().

function getScore()

Parameters: none

Returns: a string value containing a number in the range of -1.0 to 1.0

SCORM Developer’s Toolkit Page 35 of 70

Example

/* get the score and convert it to a number */
var nScore = getScore() - 0;

SCORM Version Action

SCORM 1.2 Gets API.core.score.raw / 100

SCORM 2004 Sets the value of API_1484_11.cmi. score.scaled

Interaction Functions

Your SCO can tell the LMS about interactions. Interactions are SCORM's name for
questions. You can tell the LMS quite a bit about an interaction including the ID
(identifier) of the interaction, the type of interaction, the learner's response, the
correct answer, whether or not the answer was correct and more.

In SCORM 1.2, you can only send information about interactions to the LMS. In
SCORM 1.2, you cannot read the interactions that you previously set (in the current
session or in future sessions). For example, the learner does the following:

 Enters "true" to question 1

 Enters "false" to question 2

 Changes his/her response to question 1 from "true" to "false"

SCORM 1.2 will only let you report each one of these actions as a separate
interaction. So your SCO will report the interactions with code like this:

setInteraction(null,"Q1","true-false","true","true","correct","1.0",null,null,null);
setInteraction(null,"Q2","true-false","true","true","correct","1.0",null,null,null);
setInteraction(null,"Q1","true-false","false","true","incorrect","1.0",null,null,null);

SCORM 2004 lets your SCO write, read and rewrite interactions. You have the
choice to report interactions in the same way as SCORM 1.2 (just write the results)
or you can rewrite an interaction:

setInteraction("0","Q1","true-false","true","true","correct","1.0",null,null,null);

setInteraction("1","Q2","true-false","true","true","correct","1.0",null,null,null);
setInteraction("0","Q1","true-false","false","true","incorrect","1.0",null,null,null);

SCORM Developer’s Toolkit Page 36 of 70

The interaction functions let you:

 Set interactions

 Get the index of an interaction based on its ID (SCORM 2004 only)

Set Interactions

SCORM defines several types of interactions:

 True-false

 Multiple Choice

 Fill-In

 Long Fill-In

 Matching

 Performance

 Sequence

 Likert

 Numeric

 Other

SCORM does not specify how your SCO presents these questions. SCORM does not
specify the way the learner interacts with these questions. SCORM simply provides
a way for you to report the results of the questions. For example, each of these
questions would report results as a multiple choice interaction.

 A text question is shown to the learner. The learner selects the correct
answer by clicking on a radio button.

 A short movie is shown to the learner. The learner is asked to navigate
through the movie to select the scene introduces a specific character in the
movie.

 A picture of a car engine is shown to the learner. The learner is asked to
click on the fuel injector.

SCORM 2004 lets you rewrite the learner's response to a question. So, the
setInteraction() function lets you set specific indexes for each interaction.

Function setInteraction(sNum, sId, sType, sResponse, sCorrect, sResult,
sWeight, nLatency, sDescription, sIdObjective)

Parameters:

SCORM Developer’s Toolkit Page 37 of 70

 sNum – a string representing an index. For example, "0", "5", "15". You can
only pass an index when your SCO is using SCORM 2004. You can determine
which version of SCORM is used by calling getCommunicationsType(). Use

null for sNum if you do not want to set specific index numbers.

 sId – a string containing the ID of the interaction. Each interaction needs to
have a unique ID. You can use simple ID strings such as "Q1" or "Q4". You can
also use globally unique URNs as recommended described is per RFC 2141
using this format: "urn:your-unique-id:unique-id-for-the-interaction".

 sType - the type of the interaction, "true-false, "choice", "fill-in" "long-fill-
in", "likert", "matching", "performance", "sequencing", "numeric", "other"

 sResponse – a string containing the response provided by the learner. The
format of the response depends on the type of question. The SCORM 2004
3rd Edition Runtime Environment (SCORM_RunTimeEnv.pdf) defines the
formar in section "4.2.9.2 Learner Response Data Model Element Specifics".

 sCorrect – a string containing the correct answer. The format of the correct
answer depends on the type of question. The SCORM 2004 3rd Edition
Runtime Environment (SCORM_RunTimeEnv.pdf) defines the format in
section "4.2.9.1 Correct Responses Pattern Data Model Element Specifics".

 sResult – a string containing "correct", "incorrect", "unanticipated", "neutral"
or "x.y" (a string containing a numeric value).

 sWeight – a string containing the weight of this question. This can be null if
you do not want to report a weight for the interaction.

 nLatency - the time the learner took to respond to the question in
milliseconds. This can be null if you do not want to report the latency for
the interaction.

 sDescription - the description of this interaction. This can be null if you do
not want to report a description for the interaction.

 sIdObjective – a string containing the ID of the objective associated with
this interaction. This can be null if you do not want to report an objective ID
for the interaction.

Returns: nothing

Example

function gradeQuestionTF(sResponse) {
 /* get the id of this question */
 /* the name is in a hidden field on this page */

SCORM Developer’s Toolkit Page 38 of 70

 var sId= document.getElementsByName("qid")[0].value;

 /* get the last response to this question */
 var sLastResponse = getState(sId + "response");

 /* see if we have the same answer */
 if (sResponse == sLastResponse) {
 /* we do, no need to do anything so quit */
 return;
 }

 /* show the feedback */
 showFeedbackTF(sResponse);

 /* record this response */
 setState(sId + "response", sResponse);

 /* get the correct answer */
 /* it is stored in a hidden field in the question */
 var sCorrect = document.getElementsByName("correct")[0].value;

 /* grade the response */
 if (sResponse == sCorrect) {
 var sResult = "correct";

 /* remember the score */
 setState(sId + "Score", "1");
 } else {

 var sResult = "wrong";

 /* remember the score */
 setState(sId + "Score", "0");
 }

 /* report the interaction */
 setInteraction(null,sId,"true-
false",sResponse,sCorrect,sResult,"1",getElapsedTime(_timeStart),null,null);

 /* reset the start time */
 _dateStart = new Date();
 _timeStart = _dateStart.getTime();
}

SCORM Version Action

SCORM 1.2 Sets:
API.cmi.interaction.n.id
API.cmi.interaction.n.type

SCORM Developer’s Toolkit Page 39 of 70

API.cmi.interaction.n.student_reponse
API.cmi.interaction.n.correct_responses.0.pattern
API.cmi.interaction.n.result
API.cmi.interaction.n.time
API.cmi.interaction.n.weighting
API.cmi.interaction.n.latency
API.cmi.interaction.n.objectives.0.id

SCORM 2004 Sets:
API_1484_11.cmi.interaction.n.id
API_1484_11.cmi.interaction.n.type
API_1484_11.cmi.interaction.n.learner_reponse
API_1484_11.cmi.interaction.n.correct_responses.0.pattern
API_1484_11.cmi.interaction.n.result
API_1484_11.cmi.interaction.n.timestamp
API_1484_11.cmi.interaction.n.weighting
API_1484_11.cmi.interaction.n.latency
API_1484_11.cmi.interaction.n.description
API_1484_11.cmi.interaction.n.objectives.0.id

Get the Index of an Interaction from Its ID

SCORM 2004 lets your SCO rewrite the data in an interaction. Your SCO will have to
find the index of the interaction to rewrite it. The getInteractionIndex() returns
the index of the interaction.

Function getInteractionIndex(sStart, sId)

Parameters:

 sStart – a string containing the starting index - use "0" if you want to start
from the beginning of the list of interactions.

 sId – a string containing the ID of the interaction that you would like to find

Returns: a string containing the index of the interaction

Example

/* see if this SCO is running in SCORM 2004 */
If (getCommunicationsType(== "SCORM 2004") {

/* it is, the learner has changed the answer for question 1, find the index for
question 1 */

var sIndex = getInteractionIndex("0", "Q1");

SCORM Developer’s Toolkit Page 40 of 70

/* update the information for question 1 */
setInteraction(sIndex, "Q1", "true-false" ,sResponse, sCorrect, sResult, "1",

getElapsedTime(_timeStart), null, null);
} else {
 /* this is SCORM 1.2, we can only add the new answer to the list of interactions
*/

setInteraction(null, "Q1", "true-false" ,sResponse, sCorrect, sResult, "1",
getElapsedTime(_timeStart), null, null);
}

SCORM Version Action

SCORM 1.2 SCORM 1.2 does not let the SCO read interactions so this
function does not work with SCORM 1.2.

SCORM 2004 Gets the interaction index (n) for the ID that matches
API_1484_11.cmi.interaction.n.id

Secondary Objective Functions

Your SCO can tell the LMS about the completion of objectives. There are two kinds
of objectives in your SCO – primary and secondary objectives. The SCO can report
only one primary objective. The SCO can report zero or more secondary objectives.
The primary objective includes these elements:

Primary Objective Information Set with this function

attempt status learnerWillReturn()

completion status setCompletionStatus()

completion percentage setCompletionPercentage()

pass/fail status setPassFail()

score setScore()

In SCORM 2004, the primary objective can contribute to the overall completion,
pass/fail status and the score of the course. The completion, pass/fail and score
can be "rolled-up" by rules found in the imsmanifest.xml file. The imsmanifest.xml
file can also contain sequencing rules that use the primary objective of the SCO.
SCORM 1.2 does not have any roll-up or sequencing rules.

SCORM Developer’s Toolkit Page 41 of 70

A SCO can set secondary objectives. These secondary objectives are not used
directly in the roll-up or sequencing of a SCORM 2004 course. However, the
secondary objectives are recorded by the LMS. The LMS can pass these secondary
objectives on to other SCOs through rules set in the imsmanifest.xml file. The
secondary objectives let you design a SCORM 2004 course that can provide an
adaptive learning experience. For example, the first SCO presented to the learner
can be a pre-test. The pre-test SCO sets secondary objectives that define how well
the learner knows the subject matter going into the course. The LMS can then pass
these secondary objectives to a second SCO that can provide a tutorial that only
covers the material related to the objectives that the learner did pass in the pre-
test.

The secondary objective functions let you:

 Set secondary objectives

 Get the index of a secondary objective based on its ID

 Get the count of secondary objectives

 Get a secondary objective score

 Get a secondary objective completion status

 Get a secondary objective completion percentage

 Get a secondary objective pass/fail status

 Get a secondary objective description

Set Secondary Objectives

SCORM does not specify how your SCO presents these questions. SCORM does not
specify the way the learner interacts with these questions. SCORM simply provides
a way for you to report the results of the questions. For example, each of these
questions would report results as a multiple choice interaction.

 A text question is shown to the learner. The learner selects the correct
answer by clicking on a radio button.

 A short movie is shown to the learner. The learner is asked to navigate
through the movie to select the scene introduces a specific character in the
movie.

 A picture of a car engine is shown to the learner. The learner is asked to
click on the fuel injector.

SCORM 2004 lets you rewrite the learner's response to a question. So, the
setInteraction() function lets you set specific indexes for each interaction.

SCORM Developer’s Toolkit Page 42 of 70

Function setObjective(sNum, sId, sCompletion, sPercentComplete, sPassFail,
sScore, sDescription)

Parameters:

 sNum – a string representing an index. For example, "0", "5", "15". Use null
for sNum if you do not want to set specific index numbers.

 sId – a string containing the ID of the objective. Each objective needs to
have a unique ID. You can use simple ID strings such as "Obj1" or "Obj4". You
can also use globally unique URNs as recommended described is per RFC
2141 using this format: "urn:your-unique-id:unique-id-for-the-objective".

 sCompletion – a string containing the completion status of the objective -
"completed", "incomplete", "not attempted", "unknown".

 sPercentComplete – a string containing the percent complete as a decimal
value, 0 is 0% complete, 0.5 is 50% complete, 1 is 100% complete, can be
null.

 sPassFail – a string containing the pass/fail status (progress measure) -
"passed", "failed", "unknown", can be null.

 sScore – a string the score of the objective - a numerical value from -1 to 1,
can be null.

 sDescription - the description of this objective. This can be null if you do
not want to report a description for the interaction, can be null.

Returns: nothing

Example

/* the learner has completed all of the work for objective one, tell the LMS */

setObjective("0", "Obj1", "completed", "1.0", "passed", "1.0", null);

SCORM Version Action

SCORM 1.2 Sets:
API.cmi.objectives.n.id
API.cmi.objectives.n.status
API.cmi.objectives.n.score.min
API.cmi.objectives.n.score.max
API.cmi.objectives.n.score.raw

SCORM 2004 Sets:
API_1484_11.cmi.objectives.n.id

SCORM Developer’s Toolkit Page 43 of 70

API_1484_11.cmi.objectives.n.completion_status
API_1484_11.cmi.objectives.n.progress_measure
API_1484_11.cmi.objectives.n.success_status
API_1484_11.cmi.objectives.n.score.scaled
API_1484_11.cmi.objectives.n.description

Get the Index of an Objective from Its ID

SCORM lets your SCO rewrite the data in an objective. Your SCO will have to find
the index of the objective to rewrite it. The getObjectiveIndex() returns the index
of the objective.

Function getObjectiveIndex(sStart, sId)

Parameters:

 sStart – a string containing the starting index - use "0" if you want to start
from the beginning of the list of objectives.

 sId – a string containing the ID of the objective that you would like to find

Returns: a string containing the index of the objective

Example

/* find the index for question 1 */
var sIndex = getObjectiveIndex("0", "Obj1");

/* update the information for this objective */
setObjective(sIndex, "Obj1", "completed", "1.0", "passed", "1.0", null);

SCORM Version Action

SCORM 1.2 Gets the interaction index (n) for the ID that matches
API.cmi.interaction.n.id

SCORM 2004 Gets the interaction index (n) for the ID that matches
API_1484_11.cmi.interaction.n.id

Get the Number of Secondary Objectives

Your SCO can get the total number of secondary objectives created by the SCO.

SCORM Developer’s Toolkit Page 44 of 70

Function getObjectiveCount()

Parameters: none

Returns: a string containing the number of secondary objectives

Example

/* get the number of secondary objectives */

var sNum = getObjectiveCount();

SCORM Version Action

SCORM 1.2 Gets API.cmi.objectives_count

SCORM 2004 Gets API_1484_11.cmi.objectives._count

Get the Score of a Secondary Objective

Your SCO can get a previously set score of a secondary objective.

Function getObjectiveScore(sIndex)

Parameters: sIndex – a string containing the index of an objective.

Returns: a string containing the score

Example

/* get the score of a secondary objective */

var sScore = getObjectiveScore(sIndex);

SCORM Version Action

SCORM 1.2 Gets API.cmi.objectives.n.score.raw / 100

SCORM 2004 Gets API_1484_11.cmi.objectives.n.score.scaled

Get the Completion Status of a Secondary Objective

Your SCO can get a previously set completion status of a secondary objective.

Function getObjectiveCompletionStatus (sIndex)

SCORM Developer’s Toolkit Page 45 of 70

Parameters: sIndex – a string containing the index of an objective.

Returns: a string containing the completion status

Example

/* get the completion status of a secondary objective */
var sStatus = getObjectiveCompletionStatus (sIndex);

SCORM Version Action

SCORM 1.2 Gets API.cmi.objectives.n.status

SCORM 2004 Gets API_1484_11.cmi.objectives.n.completion_status

Get the Completion Percentage of a Secondary Objective

Your SCO can get a previously set completion percentage of a secondary objective.

Function getObjectiveCompletionPercentage(sIndex)

Parameters: sIndex – a string containing the index of an objective.

Returns: a string containing the completion percentage

Example

/* get the completion percentage of a secondary objective */
var sPercentComplete = getObjectiveCompletionPercentage(sIndex);

SCORM Version Action

SCORM 1.2 SCORM 1.2 does not define this type of value for an objective.
The function returns "" for SCORM 1.2

SCORM 2004 Gets API_1484_11.cmi.objectives.n.progress_measure

Get the Pass/Fail Status of a Secondary Objective

Your SCO can get a previously set pass/fail status of a secondary objective.

Function getObjectivePassFail(sIndex)

Parameters: sIndex – a string containing the index of an objective.

SCORM Developer’s Toolkit Page 46 of 70

Returns: a string containing the pass/fail status

Example

/* get the completion percentage of a secondary objective */

var sPassFail = getObjectivePassFail(sIndex);

SCORM Version Action

SCORM 1.2 SCORM 1.2 does not define this type of value for an objective.
The function returns "" for SCORM 1.2

SCORM 2004 Gets API_1484_11.cmi.objectives.n.success_status

Get the Description of a Secondary Objective

Your SCO can get a previously set description of a secondary objective.

Function getObjectiveDescription(sIndex)

Parameters: sIndex – a string containing the index of an objective.

Returns: a string containing the description

Example

/* get the description of a secondary objective */
var sDescription = getObjectiveDescription(sIndex);

SCORM Version Action

SCORM 1.2 SCORM 1.2 does not define this type of value for an objective.
The function returns "" for SCORM 1.2

SCORM 2004 Gets API_1484_11.cmi.objectives.n.description

Type of Communications Functions

Theses functions let your SCO know the specific type of communications available
to your SCO. You SCO can be launched from:

SCORM Developer’s Toolkit Page 47 of 70

 A LMS that supports SCORM 2004

 A LMS that support SCORM 1.2

 As a web page from a folder on a local computer

When you are creating your SCO you will probably need to test it frequently by
launching the SCO as a web page from a folder on a local computer. The toolkit
functions will continue to work when you launch your SCO from the local computer
however your SCO will always appear to be in its first session. None of the data (for
example, the bookmark) that you set will be kept (there is no LMS available to
store your data).

Determine If the SCO Can Communicate With the LMS

You may want to call diagnostic code if your SCO cannot communicate with the
LMS.

function canCommunicateWithLMS()

Parameters: none

Returns: true if the SCO can communicate with the LMS, else false

Example

/* see if this SCO can communicate with the LMS */
if (canCommunicateWithLMS() == false) {
 /* no communication available, put up an alert */

 alert("The SCO cannot communicate with the LMS");
}

SCORM Version Action

SCORM 1.2 Returns true if the SCORM 1.2 object API can be located

SCORM 2004 Returns true if the SCORM 2004 object API_1484_11 can be
located

SCORM Developer’s Toolkit Page 48 of 70

Get the SCORM Version

The toolkit does it best to perform the same functions with both SCORM 1.2 and
SCORM 2004. However, there are some differences between the two versions of
SCORM. So, you may want your SCO to get the SCORM version so you can provide
code to handle these differences.

function getCommunicationsType()

Parameters: none

Returns: a string containing "SCORM 2004", "SCORM 1.2 or "none" (launched as a
web page from the local computer)

Example

/* see if this SCO is running in SCORM 2004 */

If (getCommunicationsType(== "SCORM 2004") {
/* it is, the learner has changed the answer for question 1, find the index for

question 1 */
var sIndex = getInteractionIndex("0", "Q1");

/* update the information for question 1 */
setInteraction(sIndex, "Q1", "true-false" ,sResponse, sCorrect, sResult, "1",

getElapsedTime(_timeStart), null, null);
} else {
 /* this is SCORM 1.2, we can only add the new answer to the list of interactions
*/

setInteraction(null, "Q1", "true-false" ,sResponse, sCorrect, sResult, "1",
getElapsedTime(_timeStart), null, null);

}

SCORM Version Action

SCORM 1.2 Returns " SCORM 1.2" if the SCORM 1.2 object API can be located

SCORM 2004 Returns "SCORM 2004" if the SCORM 2004 object API_1484_11 can
be located

Lower Level Functions

The lower level functions let you directly call the SCORM 1.2 and SCORM 2004
Runtime API provided by the LMS. You can call these lower level functions if you
need a specific SCORM feature not provided by the higher-level functions.

SCORM Developer’s Toolkit Page 49 of 70

Toolkit Function SCORM 2004 Function SCORM 1.2 Function

scormInitialize() Initialize("") LMSInitialize("")

scormTerminate() Terminate("") LMSFinish("")

scormGetValue(sName) GetValue(sName) LMSGetValue(sName)

scormSetValue(sName,
sValue)

SetValue(sName, sValue) LMSSetValue(sName,
sValue)

scormGetLastError() GetLastError() LMSGetLastError()

scormGetErrorString() GetErrorString() LMSGetErrorString()

scormGetDiagnostic() GetDiagnostic() LMSGetDiagnostic()

SCORM Developer’s Toolkit Page 50 of 70

Sample SCOs
The toolkit comes with five sample SCOs that demonstrate different ways to use
the toolkit.

 Sample 1 – This SCO shows you how to create a multi-page SCO without the
use of a HTML frameset. The SCO presents several information pages to the
learner using individual HTML pages. The SCO is complete when the learner
reaches the last HTML page.

 Sample 2 – This SCO is similar Sample 1. However, the launch page
(described below) is implemented differently than in sample 1.

 Sample 3 – This SCO is similar in design to samples 1 and 2. This SCO
presents a simple test. The first page of the SCO provides an introduction to
the test. The next two pages present questions. The final page shows a
summary of the test. The SCO is complete when the learner achieves a
passing score.

 Sample 4 – This SCO is implemented in a frameset that contains two frames.
The frameset is available throughout the SCORM session so it provides a
convenient place to maintain the state information for the SCO. However, a
frameset makes it that much more difficult for visually impaired learners to
use a screen reader to understand the content of the course. SCOs contain
state information so it is usually easier to create a SCO with a frameset. The
top frame of the frameset presents the content (several HTML pages). The
bottom frame contains the navigation buttons used to navigate within the
SCO.

 Sample 5 – This SCO is implemented in Flash. The SCO contains a HTML page
which contains a single Flash movie (SWF file). All of the content of the SCO
is contained within the Flash movie. The movie uses ActionScript to get/set
the bookmark and to set the completion status of the SCO.

The samples are designed to show you different ways to use the functions
contained in this toolkit. The samples are sparse so you can easily see the code
needed to communicate with the LMS using SCORM. The samples do not contain
rich media and other interactivity that will be unique to your real-life courses.
Once you understand how the samples implement SCORM you can add the real-life
media and interactivity needed to support the instructional-design of your course.

SCORM Developer’s Toolkit Page 51 of 70

You can also study the samples to see how SCORM support could be added to
existing courses.

Sample 1 – a SCO Launched without a Frameset

This SCO shows you how to create a multi-page SCO without the use of a HTML
frameset. Many course developers find it easier to create SCOs with a HTML
frameset. Sample 4 shows you how to create a SCO using a frameset.

The SCO in sample 1 presents several information screens to the learner using
individual HTML pages. The attempt on the SCO is complete when the learner

reaches the last HTML page (summary.htm). Sample 1 contains these files:

 Launch page – the LMS loads sample1\launch.htm into the browser to launch
the SCO.

 Content pages – the content of the SCO is in the sample1 folder. The content

consists of page1.htm, page2.htm, page3.htm and summary.htm.

 Style sheet – all of the content pages use a common CSS style sheet named
style.css.

 JavaScript files – the SCO's launch page and content pages use three
JavaScript files.

o sco_api.js – this file contains all of the toolkit's functions.

o sco_noframes.js – this file contains JavaScript functions that are useful
to create SCOs that do not use a frameset to launch the SCO.
sco_noframes.js is used in samples 1, 2 and 3.

o sco_complete.js – this file contains JavaScript functions called when
the pages in the SCO are unloaded

The SCO's Launch File – launch.htm

A SCO must contain at least one HTML page. Sample 1 contains several HTML

pages. The first page launched by the LMS for this SCO is launch.htm. launch.htm
decides if the SCO should show the learner the beginning of the SCO (page1.htm)
or pick up from the bookmarked page recorded by the SCO when it was launched in
a previous session.

SCORM Developer’s Toolkit Page 52 of 70

Launch.htm calls the function initSCO() which initializes the SCO (the function
initSCO() is defined in sco_noframes.js). initSCO() takes a single parameter. If you pass
a null as the parameter, the function returns as soon as the SCO initialization is
complete. If you pass a file name as a parameter, the function will do one of two
things:

1. The file name passed to initSCO() will be loaded into the browser if this is
the first time the learner has launched this SCO.

2. The bookmarked page will be loaded if this is not the first time the learner
has launched the SCO.

The launch page for the first sample SCO (sample1\launch.htm) automatically
launches either the first page of the SCO or the bookmarked page. The launch page
does this by using the onload attribute for the <body> tag.

<body onload="apiInitSCO('page1.htm')">

The Content Pages in the SCO

The SCO in sample 1 is simply a collection of HTML pages that present the content
of the SCO. Sample 1 shows the pages in a simple linear order. Your SCO could use
a linear order, let the learner select the order from a menu or use some other
method to provide navigation from page to page. The pages in your SCO can also
provide any type of information or interaction.

Each page in this sample work like this:

1. Each page includes the JavaScript code from the toolkit (sco_api.js,

sco_noframes.js and sco_complete.js).

2. The pages in the SCO link to other pages in the SCO in a specific way.

3. The pages call a function named unloadPage() when they unload. The
summary.htm page calls the unloadPage() function with a parameter to set
the completion status of the SCO.

SCORM Developer’s Toolkit Page 53 of 70

Including the JavaScript Files

Each page in the SCO includes sco_api.js, sco_noframes.js and sco_complete.js. The
file sco_api.js contains the toolkits functions. The file sco_noframes.js contains
JavaScript functions that make it easy to create a SCO without a frameset. The
functions in sco_complete.js are called when a page is unloaded in the SCO. The

sco_complete.js file contains functions can be customized for each SCO (more
details below). The links to the JavaScript code are in the <head> section of the
HTML page:

<script language="javascript" type="text/javascript" src="../sco_api.js"></script>

<script language="javascript" type="text/javascript" src="../sco_noframes.js"></script>
<script language="javascript" type="text/javascript" src="sco_complete.js"></script>

Links in the Content Pages

The content pages in this sample provide links between the pages. For example,

Page 2 (sample1\page2.htm) has a link back to the page 1 and a link forward to the
page 3. The links between content pages have the same format:

<a href="page2.htm" onclick="apiLink(this.href); return false;"

onkeypress="apiLink(this.href); return false;" alt="Link to page 2">Go to page 2

 href="page2.htm" – the filename of the page to link to

 onclick="gotoPage(this.href); return false;" – this JavaScript function is called
when the learner clicks on the link. This function loads the file specified in
the href attribute.

 onkeypress="gotoPage(this.href); return false;" - this JavaScript function is
called when the learner selects the link with a key press. This function loads

the file specified in the href attribute.

The gotoPage() function (found in sco_noframes.js) keeps track of the bookmark for
the SCO. The bookmark records the learner's current location with a SCO. When
the learner restarts the SCO (launches a new session) the bookmark information is
retrieved and the learner is returned to the previous location within the SCO.

SCORM Developer’s Toolkit Page 54 of 70

Unloading a Content Page

When a content page in the SCO is unloaded, it calls an event named onunload
(Internet Explorer also calls an event named onbeforeunload). These events are

attributes of the <body> tag. Each page in the SCO calls the unloadPage() function
to handle these events.

<body onbeforeunload="unloadPage()" onunload="unloadPage()">

The unloadPage() function automatically keeps track of state information between
pages.

The unloadPage() function calls two functions in the sco_complete.js file. You could
modify these functions for every SCO in your course. The functions are:

function stateCheck(sCompletion) – called every time your page is about to unload.

You can use this function to remember state information for your page. The parameter
sCompletion is the data passed to unloadPage()

function completionCheck(sCompletion) – called only when the SCO session will be
terminated You can use this function to set the SCO completion status. The parameter
sCompletion is the data passed to unloadPage()

Completing the Attempt on the SCO

The final page in the SCO is summary.htm. summary.htm calls unloadPage('complete')
when it is unloaded. This function end ups up calling the completionCheck() function
in sco_completion.js (shown below). This function decides if the SCO session should
be marked as completed and the SCO should tell the LMS that the attempt on this
SCO is complete (the learner will not return in another session).

function completionCheck(sCompletion) {
 /* see if the page has told us to mark the SCO as complete */
 if (sCompletion == "complete") {
 /* it has, mark the SCO complete */
 setCompletionStatus("completed");

 /* view this as a SCO as passed */
 setPassFail("passed");

 /* the learner will not return */
 learnerWillReturn(false);
 } else {
 /* in has not, set the SCO to incomplete */

SCORM Developer’s Toolkit Page 55 of 70

 setCompletionStatus("incomplete");

 /* the learner will return */
 learnerWillReturn(true);
 }
}

Sample 2 – a Variation to Sample 1

Sample 2 is identical to sample 1 except for the launch page (sample2\aunch.htm).
The launch page for the second sample SCO (sample2\launch.htm) initializes the SCO
by calling initSCO() with the parameter set to null (see code sample below). The
launch page then displays a message to the learner. The learner gets one message
when he or she first launches the SCO. The learner gets another message if he or
she has launched the SCO one or more times.

<h1>Sample SCO 2 Launch Page</h1>

<p>This is the launch page of the SCO. This portion of the page will be displayed every
time the learner launches this SCO.</p>
<script language="javascript" type="text/javascript">
 /* Initialize the SCO session */
 initSCO(null);

 /* initialize a variable to write dynamic information to this page */
 var sData = '<p>This portion of the page is dynamically generated. ';

 /* see if this is the learner's first time launching this SCO */

 if (isFirstLaunch()) {
 /* it is, write welcome information and provide a link to the first page
of content */
 sData += 'This is the first time you have launched the SCO. ';
 sData += 'Click the link below to go to the first page.</p>';
 sData += '<div class="nav">';
 sData += '<a id="nextlink" href="page1.htm"
onclick="gotoPage(this.href); return false;" onkeypress="gotoPage(this.href); return
false;" title="Link to page 1">Go to page 1';
 sData += '</div>';
 } else {
 /* get the bookmark */
 var sBookmark = getBookmark();

 /* welcome the user and provide a link to it */
 sData += 'You have launched this SCO before. ';
 sData += 'Click the link below to return to the bookmarked page.</p>';

SCORM Developer’s Toolkit Page 56 of 70

 sData += '<div class="nav">';
 sData += '<a id="nextlink" href="' + sBookmark + '"
onclick="gotoPage(this.href); return false;" onkeypress="gotoPage(this.href); return
false;" title="Link to the bookmarked page">Go to the bookmarked page';
 sData += '</div>';
 }

 /* write out the HTML */
 document.write(sData);
</script>

You can decide if you prefer the method in sample 1 or sample 2 to launch your
SCOs created without a frameset. Both methods conform to the SCORM standard.
The second method might be better suited to learners with a visual disability since
it allows the learner to control the navigation to the first page of content in the
SCO.

Sample 3 – a Test in a SCO Launched without a Frameset

Sample 3 is very similar to sample 1. Both samples create a SCO without a
frameset. Both SCOs show a linear collection of HTML pages. The SCO in sample 1
shows a sample test. Sample 3 shows you how to use the toolkit functions to save
and restore information collected by the SCO. This information is used to collect
the learner's responses to the test questions and to keep track of the score for each
question. The SCO uses this information to calculate an overall score for the SCO.

The Question Pages

Sample 3 has two HTML pages that contain true-false pages. The question pages

are sample3\q1.htm and sample3\q2.htm. The pages present a question to the learner
and then let the learner select a radio button to indicate a response of true or

false. The radio buttons call a the function gradeQuestionTF() to grade the response,
show the appropriate feedback, tell the LMS about this interaction and save
information about the response and score in the suspend data for this SCO.

You may want to implement questions in your SCOs. It is helpful to trace through
the logic in this sample to see how a question can save and restore plus contribute
to the overall score of a SCO.

SCORM Developer’s Toolkit Page 57 of 70

The Summary Page

Sample 3 has a summary page (summary.htm). The summary page gets the
information set by the question pages. The summary pages checks to see scores
given to each question in the SCO. The summary page then displays a dynamic
message to tell the learner if he has passed or failed the SCO. You must launch the
summary page from a LMS (or a tool such as SCORM Visualizer (http://www.e-
learningconsulting.com/products/scorm-visualizer.html) to see the summary page
work correctly. The summary page depends on getting the suspend data for the
SCO. The suspend data is not available when the SCO is launched from a folder on
your computer.

Sample 4 – a SCO Launched with a Frameset

This SCO shows you how to create a multi-page SCO with the use of a HTML
frameset. Many course developers find it easier to create SCOs with a HTML
frameset. Samples 1, 2 and 3 show you how to create a SCO using a frameset.

The SCO in sample 4 presents several information screens to the learner using
individual HTML pages. The attempt on the SCO is complete when the learner

reaches the last HTML page (summary.htm). Sample 4 contains these files:

 Launch page – the LMS loads sample4\launch.htm into the browser to launch

the SCO. This page is a frameset that contains 2 frames. blank.htm is initially
loaded into the top frame. navigation.htm is loaded into the bottom frame.

 Content pages – the content of the SCO is in the sample4 folder. The content
consists of page1.htm, page2.htm, page3.htm and summary.htm.

 Style sheet – all of the content pages use a common CSS style sheet named
style.css.

 JavaScript files – the SCO's launch page uses two JavaScript files.

o sco_api.js – this file contains all of the toolkit's functions.

o sco_frameset.js – this file contains JavaScript functions that are useful
to create SCOs that use a frameset to launch the SCO.

http://www.e-learningconsulting.com/products/scorm-visualizer.html
http://www.e-learningconsulting.com/products/scorm-visualizer.html

SCORM Developer’s Toolkit Page 58 of 70

The SCO's Launch File – launch.htm

A SCO must contain at least one HTML page. Sample 4 contains several HTML

pages. The first page launched by the LMS for this SCO is launch.htm. launch.htm
decides if the SCO should show the learner the beginning of the SCO (page1.htm)
or pick up from the bookmarked page recorded by the SCO when it was launched in
a previous session.

Launch.htm calls the function initSCO() when it is loaded. This function initializes
the SCO session (the function initSCO() is defined in sco_frameset.js) and then does
one of two things:

1. Loads the file name in _aPages[0] into the browser if this is the first time the
learner has launched this SCO. The SCO completion status is set to
"incomplete" if this is the first launch of the SCO by the learner.

2. The bookmarked page will be loaded if this is not the first time the learner
has launched the SCO.

The initSCO() function also records the start time for the session. The launch page
calls termSCO() when it is unloaded. termSCO() records the session time and
terminates the session. The launch page calls initSCO() and termSCO() by attaching
those function calls to the onload, onbeforeunload and onunload attributes in the
<frameset> tag.

<frameset rows="*,40" frameborder="no" border="0" framespacing="0" onload="initSCO()"

onbeforeunload="termSCO()" onunload="termSCO()">

The Content Pages in the SCO

The SCO in sample 4 is simply a collection of HTML pages that present the content
of the SCO. Sample 4 shows the pages in a simple linear order. Your SCO could use
a linear order, let the learner select the order from a menu or use some other
method to provide navigation from page to page. The pages in your SCO can also
provide any type of information or interaction.

Each page in this sample work like this:

SCORM Developer’s Toolkit Page 59 of 70

1. Each page has the option to call the functions located in the frameset

defined in launch.htm. For example, the summary page (summary.htm) marks
the SCO as complete by calling parent.setCompletionStatus("completed").

2. The pages in the SCO link to other pages in the SCO with simple anchor
(<a>) links. The pages are automatically loaded into the upper frame of the
frameset.

Including the JavaScript Files

Only the launch page (launch.htm) loads the JavaScript files for the toolkit. The
content pages call these functions from the frameset. The links to the JavaScript

code are in the <head> section of the launch.htm page:

<script language="javascript" type="text/javascript" src="../sco_api.js"></script>

<script language="javascript" type="text/javascript" src="sco_frameset.js"></script>

Navigation within the SCO

The bottom frame of the frameset loads a file named navigation.htm. This file
defines two buttons to move forward and back within the SCO. You could use this
type of navigation within your SCO. You could also provide a frame that shows a
table of contents. You could put the navigation buttons within each page. You
could create a course that has non-linear navigation. The complexity and the
function of the navigation can be driven by the instructional design of your SCO.

The navigation in this sample is rather simple. We will trace the navigations steps.

navigation.htm defines functions for the back and previous buttons to call

<a id="prevlink" href="#" onclick="prevPage(); return false;" onkeypress="prevPage();
return false;" title="Go to the previous page"><<Back

<a id="nextlink" href="#" onclick="nextPage(); return false;" onkeypress="nextPage();
return false;" title="Go to the next page">Next>>

The nextPage() function (defined in sco_frameset.js) is called when the learner clicks
on the next button. The nextPage() function calls the gotoPage() function to load the
next content page. The updates a variable named _nCurrentPage which is an index

into an array of page names called _Pages. The gotoPage() function sets the
bookmark (so the SCO can restart from the booked mage in the next session) and

SCORM Developer’s Toolkit Page 60 of 70

then loads the next file name from the array into the content frame of the
frameset.

function gotoPage(nIndex) {

 /* update the current page global variable */
 _nCurrentPage = nIndex;

 /* see if this is the first page */
 if (nIndex == 0) {
 /* it is, make the previous button invisible so the learner cannot select
it */
 navigationFrame.document.getElementById("prevlink").style.visibility =
"hidden";
 } else {
 /* not the first page, make sure the previous butotn is visible */
 navigationFrame.document.getElementById("prevlink").style.visibility =
"visible";

 }

 /* see if this is the last page */
 if (nIndex == _aPages.length - 1) {
 /* it is the last page, make the next button invisible so the learner
cannot select it */
 navigationFrame.document.getElementById("nextlink").style.visibility =
"hidden";
 } else {
 /* not the last page, make sure the next butotn is visible */
 navigationFrame.document.getElementById("nextlink").style.visibility =
"visible";
 }

 /* set the bookmark so we can return to this page when the SCO is relaunched
*/
 /* make sure we pass a string to the setBookmark functions since all data in

SCORM is passed as a string */
 setBookmark(nIndex+"");

 /* load the content page into the content frame */
 contentFrame.location.replace(_aPages[nIndex]);
}

Completing the Attempt on the SCO

The final page in the SCO is summary.htm. summary.htm marks the SCO as complete,
passes and tells the LMS that the attempt on this SCO is complete (the learner will
not return in another session).

SCORM Developer’s Toolkit Page 61 of 70

function scoIsDone() {
 if (self != parent) {

 parent.setCompletionStatus("completed");
 parent.setPassFail("passed");
 parent.learnerWillReturn(false);
 }
}
</script>
</head>
<body onload="scoIsDone()">

Sample 5 – A SCO Created With Flash

This SCO shows you how to create a SCO with a Flash movie (a SWF file). The SCO
in sample 5 presents several information screens to the learner using frames in a
single Flash movie. The attempt on the SCO is complete when the learner reaches
the last set of frames. Sample 5 contains these files:

 Launch page – the LMS loads sample5\launch.htm into the browser to launch
the SCO. This page loads a single Flash movie called sample5\sample5.swf.

 Content – the content of the SCO is a collection of frames in
sample5\sample5.swf. The SWF file is created with sample5\sample5.fla and
sample5\sample5.as.

 JavaScript files – the SCO's launch page uses three JavaScript files.

o sco_api.js – this file contains all of the toolkit's functions.

o sco_ending.js – this file contains a JavaScript function that iscalled
when the launch page is unloaded. A Flash movie cannot reliably
detect when it is unloaded so this function can be used to perform
the final calls to the toolkits functions.

o ufo.js – this file is used by sample5\launch.htm to load the Flash movie.
Recent changes to Internet Explorer require a Flash movie to be
"activated" (clicked on) before input is allowed. The functions in

ufo.js use JavaScript to load the Flash movie so it does not have to be
activated. ufo.js contains code written by Bobby Vandersluis
http://www.bobbyvandersluis.com/ufo/.

http://www.bobbyvandersluis.com/ufo/

SCORM Developer’s Toolkit Page 62 of 70

The SCO's Launch File – launch.htm

A SCO must contain at least one HTML page. So we must have a launch page even
though we are created a SCO using Flash.

Launch.htm calls the function initSCO() when it is loaded. This function initializes
the SCO session (the function initSCO() is defined in launch.htm). The initSCO()
function initializes the SCORM session and also records the start time for the
session.

The launch page calls termSCO() when it is unloaded. termSCO() records the session
time, calls a function called scoIsEnding() in sco_ending.js and terminates the
session. The launch page calls initSCO() and termSCO() by attaching those function
calls to the onload, onbeforeunload and onunload attributes in the <frameset> tag.

/* load the Flash movie using UFO code */

var FO = { movie:"sample5.swf", width:"100%", height:"100%", majorversion:"8",
build:"0", id:"ufoCom", name:"ufoCom", swliveconnect:"true",
allowscriptaccess:"always", setcontainercss:"true" };
UFO.create(FO, "ufo");

/* onload function */
function initSCO() {
 /* start the SCORM session */
 initCommunications();

 /* start the session timer */
 startSessionTime();

 /* add the unload function - we need to do this here because UFO also has an
unload handler */
 addOnunloadEvent(termSCO);
}

/* unload function */
_bUnload = false;
function termSCO() {
 /* see if we have already done this */
 if (!_bUnload) {
 /* we have not, remember */
 _bUnload = true;

 /* set the session time */
 setSessionTime(_timeSessionStart);

SCORM Developer’s Toolkit Page 63 of 70

 /* see if this SCO is complete */
 var sComplete = getCompletionStatus();
 if (sComplete == "incomplete" || sComplete == 'unknown') {
 /* it is not, make sure the LMS retains the data so the learner
can return */
 learnerWillReturn(true);
 }

 /* allow the SCO author to make one last SCORM call before the session
is complete */
 scoIsEnding();

 /* terminate the session */
 termCommunications();
 }
}

sample5\sample5.swf loads an ActionScript file called sample5\sample5.as to perform
most of its functions. Maintaining your ActionScript code in a separate file makes it
easy to create SCOs that can be reskinned easily without changing the functionality

of the SCO by mistake. sample5\sample5.swf has no visual element on the first frame
of the movie. Having a visually-blank first frame is typical when you create a SCO

using Flash. The first frame has ActionScript code (found in sample5\sample5.as)
that checks to see if the learner is launching this SCO for the first time. If he/she is
launching the SCO for the first time, the code calls
goToAndPlay(_movieStartFrame) to start playing the first part of the SCO. If the
learner is returning, the code gets the bookmark (a frame number) and starts
playing the movie from the bookmark. Each section within the movie updates the
bookmark. The movie provides a way to navigate to the different sections within
the movie.

The Content of the SCO

The SCO in sample 5 is a collection of Flash frames in sample5.swf. The sample flash
file defines 3 ranges of frames that are labeled "first", "second" and "third". You
could design your Flash movie in any way. For example, you could have a simple
movie that plays from start to end. You could create a Flash movie that loads many
other Flash movies. There is no limit to the functionality that you can add to your
Flash movie.

The Flash movie can make calls to the toolkit's JavaScript functions. These function
calls are made from ActionScript to JavaScript using a function in Flash 8 called

SCORM Developer’s Toolkit Page 64 of 70

External Interface. For example, here is how the Flash movie uses External
Interface to tell the LMS that the SCO's completion status is incomplete:

ExternalInterface.call("setCompletionStatus","incomplete");

Including the JavaScript Files

Only the launch page (launch.htm) loads the JavaScript files for the toolkit. The

links to the JavaScript code are in the <head> section of the launch.htm page:

<script language="javascript" type="text/javascript" src="../sco_api.js"></script>
<script language="javascript" type="text/javascript" src="sco_ending.js"></script>

The Flash movie can make calls to the toolkit's JavaScript functions. These function
calls are made from ActionScript to JavaScript using a function in Flash 8 called
External Interface. For example, here is how the Flash movie uses External
Interface to tell the LMS that the SCO's completion status is incomplete:

ExternalInterface.call("setCompletionStatus","incomplete");

Navigation within the SCO

The movie provides buttons to navigate to the different sections within the movie.

buttonListener1 = new Object();
…

// these functions cause each button to go to the correct section of the movie
buttonListener1.click = function (){ gotoAndStop("first");}
first_btn.addEventListener("click", buttonListener1);
…

You could define any type of navigation within your Flash movie for your SCO. You
will just want to provide a way to update the bookmark for each navigation
request.

SCORM Developer’s Toolkit Page 65 of 70

Completing the Attempt on the SCO

The final section in the Flash movie marks the SCO as complete, passes and tells
the LMS that the attempt on this SCO is complete (the learner will not return in
another session).

/* use the ExternalInterface object for all SCORM communications */

import flash.external.*;

// learner has done everything needed to finish this SCO so mark the SCO as complete
ExternalInterface.call("setCompletionStatus","completed");

// learner has performed done a great job in the SCO so mark the SCO as passed
ExternalInterface.call("setPassFail","passed");

// tell the LMS that the learner does not plat to return to the SCO
ExternalInterface.call("learnerWillRelaunch",false);

SCORM Developer’s Toolkit Page 66 of 70

Creating Your Own SCO
The samples provide a good framework to create your own SCOs. Take a look at
the sample that best fits your development needs:

 Create a SCO launched with a HTML Frameset – launching a SCO with a
frameset provides the easiest way to manage the state information
throughout the pages in your SCO. The frameset also provide a place to
centralize the code needed to implements your SCOs instructional strategy.
Sample 4 demonstrates how to create SCO using a HTML frameset. Your
HTML pages can contain any type of content supported by the browser
including Flash movies.

 Create a SCO WITHOUT using a HTML Frameset – some organizations do
not want to use framesets to create a SCO because framesets makes it more
difficult for visually impaired learners to use the SCO. One thing to keep in
mind. Most LMS systems launch your SCO inside a frameset. The LMS's
frameset contains the SCORM Runtime API and a frame used to present the
navigation provided by the LMS. Samples 1, 2 and 3 demonstrate how to
create a SCO without using a HTML frameset. These samples use JavaScript

functions in no_frames.js which greatly reduce the work to create a SCO
without a launching frameset. Your HTML pages can contain any type of
content supported by the browser including Flash movies.

 Create a SCO with Flash – You may want to create all of the content of your
SCO in Flash. Flash provides a great user experience (of course the learner
will need to have the Flash plug-in to use a SCO created with Flash). Flash
provides excellent control over animation, audio and video. You can use
Flash to create sophisticated interactions. Sample 5 demonstrates how to
create a SCO using Flash.

SCORM Developer’s Toolkit Page 67 of 70

Testing the Functionality of Your SCO
There are three functionality areas that you should test for your SCO:

1. Does the SCO use the SCORM Runtime API correctly

2. Does the SCO report the correct information to support the instructional
design of the SCO and the course

3. Does the SCO correctly save and restore state so it can be launched in
multiple sessions

Test the Use of the SCORM Runtime API

ADL provides a SCORM conformance test. There are two versions of the
conformance test – one for SCORM 2004 and one for SCORM 1.2.

 SCORM 2004 - SCORM 2004 3rd Edition Conformance Test Suite Version 1.0.
http://www.adlnet.gov/downloads/306.cfm

 SCORM 1.2 - SCORM Version 1.2 Conformance Test Suite Version 1.2.7.
http://www.adlnet.gov/downloads/194.cfm

The conformance test will test the minimum conformance level of your SCO with
the SCORM specification. The conformance test will indicate if a SCO:

1. Finds the SCORM Runtime Adapter

2. Calls the initialize and terminate functions at the right time

3. Has the proper syntax for making other SCORM function calls

The conformance test will not tell you if your SCORM reports data items essential
to your instructional design (such as the completion status and a score). The
conformance test will also not tell you if your SCO manages state correctly in
multiple sessions (the conformance test only launches your SCO once).

http://www.adlnet.gov/downloads/306.cfm
http://www.adlnet.gov/downloads/194.cfm

SCORM Developer’s Toolkit Page 68 of 70

Test the Information Reported to Support Your
Instructional Design

You will want to make sure your SCO reports on the data required for the
instructional design of the SCO and the course containing your SCO. Generally, you
will want to create SCOs that report some or all of these items:

Information to report Set with this function

attempt status learnerWillReturn()

completion status setCompletionStatus()

completion percentage setCompletionPercentage()

pass/fail status setPassFail()

score setScore()

The information you report from your SCO can be used within a SCORM 2004 course
to affect the sequencing of the course. The information reported by the SCO can
also be rolled-up into an overall result for the course. For example, the overall
score of the course can be the average of the scores reported by three SCOs.

The ADL conformance test will show you the information reported by your SCO in
its initial launch. LMSs will show you some or all of the information reported by a
SCO. SCORM Visualizer (http://www.e-learningconsulting.com/software.html) will
show you all of the information reported by your SCO at the exact moment it is
reported.

Test the Use or State Data to Support Multiple Launches
of Your SCO

You may want to create a SCO that restore the bookmark and other state
information when the SCO is relaunched by a learner. SCORM Visualizer
(http://www.e-learningconsulting.com/software.html) will show you all of the
state information and will let you relaunch the SCO so you can see if the state
information is used correctly. LMSs will also let you relaunch a SCO but most do not
let you view the state information between launches.

http://www.e-learningconsulting.com/software.html
http://www.e-learningconsulting.com/software.html

SCORM Developer’s Toolkit Page 69 of 70

Publishing Your SCORM Course
A SCORM course is a collection of one or more SCOs. You publish a course by
creating a SCORM manifest. The SCORM manifest is a file named imsmanifest.xml.
You then place the manifest file and the SCOs into a zip file. The zip file is called a
Package Interchange Format (PIF) file. Most people refer to this zip file as a SCORM
package.

The manifest file describes:

 The metadata for the course. This can include the title and description of
the course.

 The organization of the SCOs. This can include the title of each SCO. The
LMS uses the organization and title of the SCOs to construct a table of
contents of the course.

 The names of the launch files for each SCO. This tells the LMS which file to
load into the browser to launch each SCO.

 A list of all of the files used by each SCO.

 Sequencing and roll-up rules – this is only available in a SCORM 2004 course.

Create a SCORM Manifest

A SCORM manifest is an XML file that describes the contents of a course. There are
free tools that let you create a SCORM manifest:

 SCORM 2004 – The RELOAD Editor - http://www.reload.ac.uk/editor.html

 SCORM 1.2

 The RELOAD Editor - http://www.reload.ac.uk/editor.html

http://www.reload.ac.uk/editor.html
http://www.reload.ac.uk/editor.html

SCORM Developer’s Toolkit Page 70 of 70

Create a SCORM Package

A SCORM Package is used to publish a SCORM course. A SCORM package is a zip file
that contains:

 imsmanifest.xml and the XSD files required to support the manifest. The
imsmanifest.xml must be in the root of the zip file.

 All of files used by the SCOs

Windows XP and Windows Vista have a built-in ability to create zip files. You can
also use tools such as winzip to create a zip file.

Sample Courses
The toolkit contains two sample courses. Both of the samples contain the same five
sample SCOs. One sample course uses a SCORM 2004-format package. The other
sample course uses a SCORM 1.2-format package.

